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Sparse methods have a significant advantage to reduce the complexity of genes expression data and to

make them more comprehensible and interpretable. In this paper, based on penalized matrix

decomposition (PMD), a novel approach is proposed to extract plants core genes, i.e., the characteristic

gene set, responding to abiotic stresses. Core genes can capture the changes of the samples. In other

words, the features of samples can be caught by the core genes. The experimental results show that the

proposed PMD-based method is efficient to extract the core genes closely related to the abiotic stresses.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Plants, as sessile organisms, have evolved an enormous capa-
city to realize their genetically predetermined developmental
program despite ever-changing environmental conditions. As a
result, they are able to cope with environmental conditions, such
as cold, drought, heat, osmotic pressure, salt, UV-B light stress, etc
[1,2]. The literatures of plant stress response are replete with title
of ‘‘some stresses’’, whose tolerance was conferred by stress
inducible protein that activates the plant’s response to a specific
stress of many abiotic stresses [3]. The underlying concept is that
there exists a specific set of interacting genes that respond to each
abiotic stress.

There are many conventional methods, such as RT-PCR or
Northern blotting, to research the expression law of characteristic
genes [4]. However these methods have some drawbacks, e.g.,
only one or a small number of genes can be studied at one time.
So, how to obtain the interacting genes responding to abiotic
stresses is still a challenge.

The rapid development of DNA microarray technology has
made it possible to monitor gene expression levels on a genomic
scale [5,6]. The gene expression data captured using the high-
throughput technique can potentially provide systematic informa-
tion regarding the underlying dynamics and mechanisms in
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biology, which greatly enhances the fundamental understanding
of life on the molecular level. However, large numbers of gene
expression data pose the problem of finding the knowledge of
interest. Analyzing these data needs well founded mathematical
tools which are adaptable to the large quantity of information and
noise they carried on. Until now, many mathematical methods,
such as singular value decomposition (SVD), principal component
analysis (PCA) and independent component analysis (ICA), have
been demonstrated to be able to analyze these data. For example,
Alter et al. proposed to use SVD for processing and modeling the
gene expression data [7]. Kumar et al. used SVD to mine health
care data [8]. PCA was used to select genes for microarray data
analysis by Wang et al. [9]. Ma et al. used PCA to identify
differential gene pathways [10]. Mustafa et al. combined NMR
with PCA to analyze the effect of salicylic acid on the metabolite
profile of Catharanthus roseus cell suspension culture [11]. Huang
et al. proposed a penalized discriminant method based on ICA for
classifying gene expression data [12]. Li et al. used locally linear
discriminant embedding to classify the gene expression data [13].

Though the classical methods such as SVD and PCA have been
successfully applied in analysis of gene expression data, they still
have some drawbacks, e.g., the left and right singular vectors of
SVD or principal components (PCs) of PCA are usually dense.
These make it difficult to interpret the singular vectors or PCs
without subjective judgment. To make the data more compre-
hensible and interpretable, many mathematical tools are devel-
oped for reducing the complexity of the data. Among these
approaches, sparse methods have a significant advantage, while
giving up little statistical efficiency. Until now, many different
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sparse methods were introduced, such as sparse PCA using the
lasso given by Zou et al. [14], sparse PCA using convex relaxation
techniques proposed by Zhang et al. [15], penalized matrix
decomposition proposed by Witten et al. [16]. Moreover, many
sparse methods have been widely used for gene expression data
analysis. A sparse linear discriminant analysis was used to
analyze the gene expression data by Wu et al. [17]. Lass et al.
used the SPCA for clustering and feature selection [18]. Zheng
et al. used the nonnegative matrix factorization for microarray
data analysis [19]. In [16], Witten et al. proposed penalized matrix
decomposition (PMD), which was used to discover the transcrip-
tional modules by Zheng et al. [20] and Zhang et al. [21].

Though sparse methods are useful, main applications of them
are focused on the clustering and classification at present, which
may not give the reasonable and intelligible results on the
selection of characteristic gene. To solve this problem, in this
paper, a novel method, based on Penalized Matrix Decomposition
(PMD), is proposed to extract ‘‘core genes’’ from the gene expres-
sion data. Here, core genes denote the characteristic gene set,
which respond to the abiotic stresses. Owing to the penalty
function, the factor matrices generated by PMD are sparse, so
PMD can make the results more comprehensible and interpreta-
ble. The core genes extracted by PMD can capture the changes of
the samples belonging to the same condition, i.e., the features of
samples can be captured by the core genes. Moreover, we focus
on how to extract the core genes responding to abiotic stresses by
our method. The experimental results show that the proposed
method can identify the core genes responding to the abiotic
stresses. The contribution of this paper lies in the proposition of a
PMD-based approach for extracting the core genes responding to
the abiotic stresses.

The remainder of the paper is organized as follows. In Section 2,
firstly, the PMD method is introduced. Then how to extract core
genes using PMD is described. The experimental results are shown
in Section 3. Section 4 concludes this paper and outlines the
future works.
2. Methods

2.1. Mathematical definition of PMD

This subsection briefly introduces the Penalized Matrix
Decomposition (PMD) proposed by Witten et al. [16]. Let X denote
an m�n matrix of real-valued data, which consists of m genes in
n samples, in general, mbn. In the case of microarray data, xij is
the expression level of the ith gene in the jth sample. The
elements of the ith row of X form the n-dimensional vector ri,
which is referred to as the transcriptional response of the ith gene.
Correspondingly, the elements of the jth column of X form the
m-dimensional vector sj, which is referred to as the expression

profile of the jth sample. Without loss of generality, let the column
means of X be zero, the singular value decomposition (SVD) of
matrix X can be written as follows:

X¼UDVT , UT U¼ Im, VT V¼ In : ð1Þ

The PMD generalizes this decomposition by additional constraints
on U and V. The rank-1 PMD can be formulated as the following
optimization problem:

minimize
d,u,v

1
2 JX�duvTJ2

F

s:t:JuJ2
2 ¼ 1, JvJ2

2 ¼ 1, P1ðuÞra1, P2ðvÞra2, dZ0 ð2Þ

where u is a column of U, v is a column of V, d is a diagonal element
of D, J�JF is the Frobenius norm, P1 and P2 are convex penalty
functions that can take a variety of forms [16].
Let U and V be m�p and n�p matrices, respectively, and D be a
diagonal matrix with diagonal elements dk, it can be proved as
follows [16]:

1

2
JX�UDVTJ2

F ¼
1

2
JXJ2

F�
Xp

k ¼ 1

uT
k Xvkdkþ

1

2

Xp

k ¼ 1

d2
k ð3Þ

Hence, using the case p¼1, we can see that u and v satisfying
Eq. (2) can also satisfy the following problem:

maximize
u,v

uT Xv

s:t:JuJ2
2 ¼ 1, JvJ2

2 ¼ 1, P1ðuÞra1, P2ðvÞra2 ð4Þ

and the d satisfying Eq. (2) is d¼uTX. The objective function uTX in
Eq. (4) is bilinear in u and v, that is, with u fixed, it is linear in v, and
vice versa. In fact, with v fixed, the criterion in Eq. (4) takes the
following form:

maximize
u

uT Xv

s:t:JuJ2
2 ¼ 1, P1ðuÞra1: ð5Þ

This criterion is not convex due to L2-equality penalty on u.
The optimization problem in Eq. (4) can be finessed to the

following biconvex optimization [16]:

maximize
u,v

uT Xv

s:t:JuJ2
2r1, JvJ2

2r1, P1ðuÞra1, P2ðvÞra2: ð6Þ

It can be turned out that the solution to Eq. (6) satisfies Eq. (4)
provided that a is chosen appropriately [16].

Eq. (6) is called the rank-1 PMD, and the iterative algorithm
used to optimize is summarized as Algorithm 1.

Algorithm 1. The iterative algorithm of the rank-1 PMD
Step 1:
 Initialize v to have unit L2-norm.

Step 2:
 Iterate until convergence:
(a)
 u’arg max
u

uT Xv,s:t:JuJ2
2r1,P1ðuÞra1
(b)
 v’arg max
v

uT Xv,s:t:JvJ2
2r1,P2ðvÞra2
Step 3:
 d’uTX
To obtain multiple factors of PMD, we can maximize the criterion
in Eq. (6) repeatedly, each time using the residuals obtained
by subtracting the product of previous factors duv from X, i.e.
Xkþ1’Xk

�dkukvT
k . Without the P1- and P2-penalty constraints, it

can be shown that the K-factor PMD algorithm leads to the rank-K
SVD of X. In particular, the successive solutions are orthogonal. This
can be seen since the solutions uk and vk are in the column and row
spaces of Xk, which has been orthogonalized with respect to uj,vj for
jA1,y,k–1. With P1 and/or P2 present, the solutions are no longer in
the column and/or row spaces, and so the orthogonality does not
hold. The detailed algorithm of PMD can be found in [16]. In this
paper, characteristic genes are selected according to u, so we only
take the penalty on u, i.e. P1(u)ra1, and do not take the penalty on v.
By choosing appropriately the parameters a1, PMD can result in
sparse factors u. Generally speaking, a1 should be restricted to
the ranges 1ra1r

ffiffiffiffiffi
m
p

, which can be selected according to the
algorithm in [16].

2.2. Extracting core genes by PMD

The PMD algorithm decomposes the matrix X of gene expres-
sion data into two bases matrices U and V, one defined by the left
singular vectors and the other by right singular vectors. Referring
to the definition in the Section 2.1, the left singular vectors span
the space of the sample expression profiles {sj} and the right
singular vectors span the space of the gene transcriptional
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Fig. 1. Graphical depiction of PMD of a matrix X, annotated with adopted in

the paper.
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Fig. 2. Workflow diagram of our method.
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responses {ri}. Following the convention [22], we refer to the right
singular vectors {vk}, i.e., the columns of V, as eigenpatterns, to the
left singular vectors {uk}, i.e., the columns of U, as eigensamples

and to the rows of U as eigengenes. eigensamples, eigengenes,
eigenpattern and other definitions are shown in Fig. 1.

To reduce the dimensionality of the data, a subset of eigen-
samples are often selected to represent X. The underlying ratio-
nale is that the eigensamples have extracted the characteristic
structure of the data. Corresponding to the eigensamples, the
eigengenes are also extracted.

In this paper, our goal is to find the core genes that denote the
characteristic gene set responding to the abiotic stresses. Referring to
the definitions in Section 2.1, the interest signals in this case are the
sample expression profile sj. By Eq. (1), the PMD equation for sj is

sj ¼
Xp

k ¼ 1

vjkdkuk, j¼ 1,2,. . .,n, ð7Þ

which is a linear combination of the eigensamples {uk}. The jth
column of VT, s0j (see Fig. 1), contains the coordinates of the jth sample
in the coordinate system (basis) of the scaled eigensamples, dkuk.
Using the vector s0j, the expression profiles of the samples may be
captured by prn variables, which are always fewer than the m

variables in the vector sj. So, PMD can generally reduce the number of
variables used to represent the sample expression profiles.

However, in order to reconstruct the original data, the eigen-
samples are needed, which are m-dimensional vectors. As men-
tioned above, the elements of the jth column of X form the
m-dimensional vector sj. So, the sample sj can be represented by
the eigensample {uk}. By choosing appropriate penalty function
P1, the sparse {uk} can be achieved. That is, responding to abiotic
stresses, the characteristic gene set, namely core genes, can be
used to represent the samples. When core genes are extracted by
PMD-based method, each of them can capture the changes of the
samples belonging to the same condition. In other words, the
features of samples can be captured by the core genes.

The schemes to obtain the core genes can be summarized as
follows:

Firstly, X is decomposed into the bases matrices U and V
using PMD.
Secondly, the sparse eigensamples {uk} are obtained.
Thirdly, the genes corresponding to nonzero entries in the
eigensamples {uk} are selected as the core genes.
Finally, the core genes are checked using Gene Ontology (GO).

The workflow diagram of our method is shown in Fig. 2.

3. Results and discussion

In this section the proposed method is evaluated by applying it to
extract the core genes responding to abiotic stresses. Section 3.1 gives
the data source. How to select the parameters is shown in Section 3.2.
In Section 3.3, the gene ontology (GO) analysis is executed to evaluate
the performance of the proposed method. The verifications of core
genes based on literatures are given in Section 3.4.

3.1. Data source

For gene expression analysis, the Affymetrix CEL files are down-
loaded from NASCArrays [/http://affy.arabidopsis.info/S, reference
numbers are: cold stress, NASCArrays-138; osmotic stress, NASCAr-
rays-139; salt stress, NASCArrays-140; drought stress, NASCArrays-
141; UV-B light stress, NASCArrays-144; heat stress, NASCArrays-146]
[23]. The arrays are adjusted to avoid the background of optical noise
using the GC-RMA software by Wu et al. [24] and normalized using
quartile normalization. The results of GC-RMA are gathered in a
matrix to be processed by PMD.

3.2. Parameters selection

The raw data include two classes, i.e. shoot and root, under each
stress. Because the sparse principal component analysis (SPCA) given
by Journee et al. outperforms existing algorithms both in quality of
the obtained solution and computational speed [25], we compare
PMD with SPCA method for extracting the core genes from these
datasets. In this paper, the l1-norm of u is taken as the penalty
function, i.e. JuJ1ra1. By choosing an appropriate a1, a sparse u with
many entries being zeros can be obtained. Because of 1ra1r

ffiffiffiffiffi
m
p

,
let a1 ¼ an

ffiffiffiffiffi
m
p

, where 1=
ffiffiffiffiffi
m
p

rar1. For simplicity, let p¼1, that is,
only one factor is used. The results given with l0- and l1-norm penalty
in SPCA are similar, which are also shown in [25]. Since the l0-norm is
faster than l1-norm, we take l0-norm penalty. The parameter g in
SPCA is used to regulate the sparse degree of PCs. For fair comparison,
500 genes are roughly selected by these two methods via choosing
appropriate parameters. The parameters a and g of the two methods,
i.e., PMD and SPCA, on different data set are listed in Table 1.

3.3. Gene Ontology (GO) analysis

The Gene Ontology (GO) Term Enrichment tool can find significant
shared GO terms or parents of those GO terms, used to describe the
genes in the query/input set and to help discover what those genes
may have in common [26]. In this paper, GOTermFinder is used
to investigate the enrichment of functional annotations of genes

http://affy.arabidopsis.info/


Table 1
The values of a and g on different data sets.

Stress Shoot Root

PMD SPCA PMD SPCA

a g a g

Drought 0.0928 0.4224 0.0999 0.4065

Salt 0.0924 0.4920 0.1057 0.5261

UV-B 0.1036 0.4505 0.0966 0.4329

Cold 0.1026 0.4660 0.0983 0.4726

Heat 0.0765 0.3770 0.0931 0.3710

Osmotic 0.1049 0.5139 0.0946 0.5338

Table 2
Response to stimulus (GO:0050896).

Stress PMD SPCA

P-value Sample frequency P-value Sample frequency

Drought s 4.55E-64 247/500 (49.4%) 2.63E-37 205/500 (41.0%)

Drought r 9.77E-34 199/500 (39.8%) 1.41E-36 205/500 (41.0%)
Salt s 3.01E-29 190/500 (38.0%) 4.36E-28 188/500 (37.6%)

Salt r 2.60E-47 222/500 (44.4%) 3.16E-24 180/500 (36.0%)

UV-B s 3.48E-62 244/500 (48.8%) 4.85E-61 242/500 (48.4%)

UV-B r 1.02E-19 170/500 (34.0%) 3.41E-12 151/500 (30.2%)

Cold s 7.85E-47 221/500 (44.2%) 3.59E-35 201/500 (40.2%)

Cold r 9.26E-33 197/500 (39.4%) 2.22E-25 183/500 (36.6%)

Heat s 3.78E-15 159/500 (31.8%) 1.09E-26 185/500 (37.0%)
Heat r 4.08E-11 148/500 (29.6%) 1.85E-10 146/500 (29.2%)

Osmotic s 1.70E-39 209/500 (41.8%) 2.92E-23 178/500 (35.6%)

Osmotic r 1.26E-15 160/500 (32.0%) 6.91E-22 175/500 (35.0%)

In this table, ‘‘s’’ and ‘‘r’’ denote shoot and root samples, respectively.
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identified by our method. The analysis of GOTermFinder provides
significant information for the biological interpretation of high-
throughput experiments. GOTermFinder is publicly available at
/http://go.princeton.edu/cgi-bin/GOTermFinderS [27]. The core
genes selected by PMD and SPCA are checked by GO, its threshold
parameters are set as follows: maximum p-value¼0.01 and mini-
mum number of gene products¼2. The results of GO Term Enrich-
ment are given in supplementary file (Sup1).

3.3.1. Response to stimulus

Table 2 lists the response to stimulus (GO:0050896), which is the
ancestor of all the abiotic stresses. Background frequency of response
to stimulus (GO:0050896) in TAIR set is 4570/29556 (15.3%).

As Table 2 listed, both methods, PMD and SPCA, can extract the
significant results with very lower P-value and very higher
sample frequency. In Table 2, the superior results are shown in
bold type. In the twelve items, there are only three of them
(drought on root, heat on shoot and osmotic on root) that SPCA
outperforms our method. In other nine items, our method is
superior to SPCA.

3.3.2. Core genes responding to the stresses

To evaluate the performance of both methods for exacting core
genes, the characteristic terms closely related to the stresses are
investigated in detail. Table 3 lists the results, with the superior
ones shown in bold type.

As Table 3 listed, for the drought stress, PMD method can
select the genes responding to water deprivation (47 in shoot and
26 in root), but SPCA method only selects 23 in shoot and 24 in
root. For the salt stress, PMD method selects the 41 and 33 genes
responding to salt stress in shoot and root, respectively, yet SPCA
can select only 28 genes in shoot and 22 genes in root. For the
UV-B stress in shoot sample, PMD and SPCA can select 104 and 83
genes defending response, respectively. For the cold stress, the
genes responding to cold can be selected by both PMD (44 in
shoot and 43 in root) and SPCA (34 in shoot and 33 in root). For
the heat stress, the genes responding to heat can be selected by
both PMD (45 in shoot and 43 in root) and SPCA (30 in shoot and
28 in root). For the osmotic stress, the genes responding to
osmotic stress can be given by both PMD (55 in shoot and 39 in
root) and SPCA (29 in shoot and 27 in root).

In summary, on all the characteristic items, our method has
superiority over SPCA.

3.4. Verifications based on the literatures

Many literatures about plants responding to abiotic stresses
have been published recently. The literatures are searched to
verify the core genes to abiotic stresses selected by PMD. In this
paper, we make our detailing investigation on the core genes
responding to drought-, salt- and cold-stresses.

3.4.1. Core genes responding to draught

For drought-stress, the core genes responding to water depri-
vation in shoot samples are listed in Table 4. In Table 4, the
column of References gives the searching results that the authors
have affirmed in the literature. The column of Response to denotes
what the genes respond to.

As Section 3.3.2 mentioned, PMD-based method identified 47
genes responding to water deprivation in shoot samples with
drought stress. All these genes can be searched in literatures.
And as Table 4 listed, all the core genes are indeed related to
drought stress, some of which are also related to cold and/or salt
stresses.

3.4.2. Core genes responding to salt

For salt-stress, the core genes responding to salt in root
samples are listed in Table 5.

As Section 3.3.2 mentioned, PMD-base method identified 33
genes responding to salt in root samples with salt stress. Table 5
lists the references about core genes responding to salt in root
samples extracted by PMD. As Table 5 listed, there are 32 genes
indeed related to salt stress, some of which are also related to cold
and/or drought stresses. And only one gene (AT5G52190) is not
related to responding to salt stress.

3.4.3. Core genes responding to cold

For cold-stress, Table 6 lists the core genes responding to cold
in shoot samples.

As Section 3.3.2 mentioned, our method identified 44 genes
responding to cold in shoot samples with cold stress. An amazing
result can be found that all the genes are responding to cold stress.
Some of them are also concerned with salt and/or drought stresses.

What should be pointed out is that, as Tables 4–6 listed, some
genes are responding to two or more abiotic stresses. These
overlapping cases of genes reveal that they take part in some
different gene regulatory networks, and the expression pattern of
them under cold, drought and salt stresses are similar [100].

From the verifications, it can be concluded that our method
can select the core genes responding to the abiotic stresses.
4. Conclusions

In this paper, a novel method was proposed for extracting
core genes based on Penalized Matrix Decomposition (PMD).
For processing gene expression data, the method can achieve

http://go.princeton.edu/cgi-bin/GOTermFinder


Table 3
Characteristic terms selected from GO by algorithms.

Stress GO Terms Background frequency PMD SPCA

P-value Sample frequency P-value Sample frequency

Drought s GO:0009414 response to water deprivation 207/29887 (0.7%) 2.86E-33 47/500 (9.4%) 1.17E-08 23/500 (4.6%)

Drought r GO:0009415 response to water deprivation 207/29887 (0.7%) 2.96E-11 26/500 (5.2%) 1.8E-09 24/500 (4.8%)

Salt s GO:0009651 response to salt stress 395/29887 (1.3%) 3.16E-16 41/500 (8.2%) 1.10E-06 28/500 (5.6%)

Salt r GO:0009651 response to salt stress 395/29887 (1.3%) 4.98E-10 33/500 (6.6%) 3.03E-03 22/500 (4.4%)

UV-B s GO:0006952 Defense response 919/29887 (3.1%) 1.54E-52 104/500 (20.8%) 8.66E-34 83/500 (16.6%)

UV-B r GO:0006953 Defense response 919/29887 (3.1%) 2.97E-05 40/500 (8.0%) 1.67E-03 36/500 (7.2%)

Cold s GO:0009409 response to cold 276/29887 (0.9%) 9.31E-25 44/500 (8.8%) 3.69E-15 34/500 (6.8%)

Cold r GO:0009410 response to cold 276/29887 (0.9%) 9.92E-24 43/500 (8.6%) 2.51E-14 33/500 (6.6%)

Heat s GO:0009408 response to heat 140/29887 (0.5%) 4.61E-40 45/500 (9.0%) 1.82E-20 30/500 (6.0%)

Heat r GO:0009409 response to heat 140/29887 (0.5%) 3.04E-37 43/500 (8.6%) 3.58E-18 28/500 (5.6%)

Osmotic s GO:0006970 response to osmotic stress 474/29887 (1.6%) 6.96E-27 55/500 (11.0%) 1.78E-06 29/500 (5.8%)

Osmotic r GO:0006970 response to osmotic stress 474/29887 (1.6%) 2.16E-13 39/500 (7.8%) 2.73E-05 27/500 (5.4%)

In this table, ‘‘s’’ and ‘‘r’’ denote shoot and root samples, respectively.

Table 4
References about core genes responding to water deprivation in shoot samples.

Gene name Response to References

ABCG22 Drought Benschop et al. (2007) [28]

ABF3 Drought, salt Abdeen et al. (2010) [29]

AKR4C8 Drought, salt, cold Simpson et al. (2009) [30]

ANNAT3 Drought, salt, cold Cantero et al. (2006) [31]

ANNAT4 Drought, salt Huh et al. (2010) [32]

AOC1 Drought Peltier et al. (2004) [33]

AT3G02480 Drought Huang et al. (2008) [34]

AT3G05640 Drought Huang et al. (2008) [34]

AT5G38710 Drought Funk et al. (2010) [35]

BGLU18 Drought, salt Huibers et al. (2009) [36]

COR413IM1 Drought, cold Okawa et al. (2008) [37]

DR4 Drought Gosti et al. (1995) [38]

DREB1A Drought, cold Seo et al. (2009) [39]

DREB2A Drought, cold Seo et al. (2009) [39]

EDL3 Drought, salt Koops et al. (2011) [40]

ERD10 Drought, salt, cold Kim et al. (2010) [41]

ESL1 Drought, salt Yamada et al. (2010) [42]

GolS2 Drought, cold Maruyama et al. (2009) [43]

GSTF6 Drought, salt Jiang et al. (2007) [44]

HAI1 Drought Huang et al. (2008) [34]

HB-12 Drought, salt Huang et al. (2008) [34]

HB-7 Drought, salt Huang et al. (2008) [34]

KIN1 Drought, cold Huang et al. (2008) [34]

LEA14 Drought, salt Huibers et al. (2009) [36]

LOX2 Drought Bannenberg et al. (2009) [45]

LTI30 Drought, cold Chung et al. (2008) [46]

LTI78 Drought, salt, cold Vergnolle et al. (2005) [47]

LTP3 Drought Huang et al. (2008) [34]

LTP4 Drought, salt Huang et al. (2008) [34]

MYB60 Drought, salt Oh et al. (2011) [48]

MYBR1 Drought, salt Huang et al. (2008) [34]

MYC2 Drought Abe et al. (2003) [49]

NAC019 Drought Tran et al. (2004) [50]

NAC3 Drought, salt Tran et al. (2004) [50]

NCED3 Drought, salt Iuchi et al. (2001) [51]

PP2CA Drought, cold Lan et al. (2011) [52]

RAB18 Drought, cold Tanaka et al. (2005) [53]

RAP2.6 Drought, salt, cold Krishnaswamy et al. (2011) [54]

Rap2.6L Drought, salt, cold Krishnaswamy et al. (2011) [54]

RPK1 Drought, salt, cold Osakabe et al. (2011) [55]

RD20 Drought, salt Aubert et al. (2010) [56]

RD26 Drought Kunieda et al. (2008) [57]

RD28 Drought Alexandersson et al. (2005) [58]

SAG21 Drought, cold Fowler et al. (2002) [59]

STZ Drought, salt, cold Rossel et al. (2007) [60]

WRKY33 Drought, salt, cold Jiang et al. (2009) [61]

ZF2 Drought, salt Drechsel et al. (2010) [62]

Table 5
References about core genes responding to salt in root samples.

Gene name Response to References

AT5G52190

bZIP1 Salt Dietrich et al. (2011) [63]

CAMBP25 Salt, drought Perruc et al. (2004) [64]

CBL1 Salt, drought, cold Du et al. (2004) [64]

DDF1 Salt, drought, cold Kang et al. (2011) [65]

EDL3 Drought, salt Koops et al. (2011) [40]

GolS2 Salt, drought, cold Maruyama et al. (2009) [43]

HB-12 Salt, drought Huang et al. (2008) [34]

HVA22B Salt Chen et al. (2002) [66]

HVA22D Salt Chen et al. (2002) [66]

LTI78 Salt, drought, cold Vergnolle et al. (2005) [47]

MKK9 Salt Zhou et al. (2002) [67]

MYB108 Salt Kraepiel et al. (2011) [68]

MYB15 Salt Chen et al. (2006) [69]

MYB2 Salt, drought Guo et al. (2011) [70]

MYB49 Salt Chen et al. (2006) [69]

MYB51 Salt Chen et al. (2006) [69]

MYB74 Salt Chen et al. (2006) [69]

MYB96 Salt, drought Chen et al. (2006) [69]

NAC6 Salt, drought Tran et al. (2004) [50]

NCED3 Salt, drought Iuchi et al. (2001) [51]

NSL1 Salt Noutoshi et al. (2006) [71]

NUDT7 Salt Jambunathan et al. (2010) [72]

RAP2.6 Salt, drought, cold Krishnaswamy et al. (2011) [54]

RHL41 Salt, cold Vogel et al. (2005) [73]

S6K2 Salt, cold Pislariu et al. (2007) [74]

SOT12 Salt Baek et al. (2010) [75]

STZ Salt, drought, cold Rossel et al. (2007) [60]

TSPO Salt Balsemao-Pires et al. (2011) [76]

UGT74E2 Salt, drought Tognetti et al. (2010) [77]

WRKY25 Salt, drought, cold Jiang et al. (2009) [61]

WRKY33 Salt, drought, cold Jiang et al. (2009) [61]

ZF2 Drought, salt Drechsel et al. (2010) [62]
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more comprehensible and interpretable results. It also can extract
the core genes which capture the changes of the samples belong-
ing to the same stresses.
Furthermore, the genes selected by the methods were ana-
lyzed using GO terms enrichment analysis. The results indicated
that the proposed PMD-based method has superiority over SPCA
on extracting the characteristic terms closely related to the
stresses. In the end, the verifications of core genes based on
literatures demonstrated that the proposed PMD-based method is
potentially effective. In future, we will focus on the biological
interpretation of the core genes.
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Table 6
References about core genes responding to cold in shoot samples.

Gene name Response to References

AT4G30660 Cold, salt Fabro et al. (2008) [78]

AT4G34150 Cold Van Leene et al. (2010) [79]

AT4G38840 Cold Lee et al. (2005) [80]

AT5G54470 Cold Mikkelsen et al. (2009) [81]

ATPMEPCRB Cold Mechli et al. (1998) [82]

BAP1 Cold Yang et al. (2006) [83]

CBF1 Drought, cold Vergnolle et al. (2005) [47]

CBF2 Cold Shinwari et al. (1998) [84]

CBL1 Cold, drought, salt Cheong et al. (2003) [85]

CCA1 Cold, drought Lau et al. (2011) [86]

CEJ1 Cold Tsutsui et al. (2009) [87]

CIPK7 Cold Huang et al. (2011) [88]

CIPK9 Cold, salt Pandey et al. (2007) [89]

COR15A Cold Thalhammer et al. (2010) [90]

COR15B Cold Thalhammer et al. (2010) [90]

COR27 Cold Mekkelsen et al. (2009) [81]

COR47 Cold, drought Huibers et al. (2009) [36]

CT-BMY Cold Vergnolle et al. (2005) [47]

CZF1 Cold Vergnolle et al. (2005) [47]

DDF1 Cold, drought Kang et al. (2011) [50]

DREB1A Cold, drought Seki et al. (2001) [91]

DREB26 Cold, drought, salt Krishnaswamy et al. (2011) [54]

ELIP1 Cold Vergnolle et al. (2005) [47]

ERD10 Cold, drought Reyes et al. (2008) [92]

ERD7 Cold, salt, drought Kimura et al. (2003) [93]

ERF5 Cold Catala et al. (2003) [94]

GolS1 Cold, salt Nishizawa et al. (2008) [95]

GolS2 Salt, drought, cold Maruyama et al. (2009) [43]

GolS3 Salt, drought, cold Maruyama et al. (2009) [43]

HVA22D Cold Chen et al. (2002) [66]

KIN1 Cold, drought Huang et al. (2008) [34]

LEA4-5 Cold, drought Reyes et al. (2008) [92]

LHY Cold, salt Lau et al. (2011) [86]

LTI30 Cold, drought Chung et al. (2008) [46]

LTI78 Cold, drought, salt Vergnolle et al. (2005) [47]

NAC062 Cold Seo et al. (2011) [96]

RHL41 Cold, salt Vogel et al. (2005) [73]

SAG21 Cold, drought Seki et al. (2001) [91]

STZ Salt, drought, cold Sakamoto et al. (2004) [97]

SUS1 Cold Bermejo et al. (2011) [98]

TCH2 Cold Delk et al. (2005) [99]

TCH4 Cold Lee et al. (2005) [80]

WRKY25 Cold, salt, drought Jiang et al. (2009) [61]

WRKY33 Cold, salt, drought Jiang et al. (2009) [61]

J.-X. Liu et al. / Computers in Biology and Medicine 42 (2012) 582–589 587
Acknowledgments

This work was supported by Program for the New Century
Excellent Talents in University (no. NCET-08–0156), NSFC under
Grant no. 61071179, Provincial Natural Science Research Program
of Higher Education Institutions of Anhui Province under Grant
no. KJ2012A005 and the Foundation of Qufu Normal University
under Grant no. XJ200947.
Appendix A. Supplementary materials

Supplementary materials associated with this article can be found
in the online version at doi:10.1016/j.compbiomed.2012.02.002.
References

[1] G.J. Allen, S.P. Chu, K. Schumacher, C.T. Shimazaki, D. Vafeados, A. Kemper,
S.D. Hawke, G. Tallman, R.Y. Tsien, J.F. Harper, Alteration of stimulus-
specific guard cell calcium oscillations and stomatal closing in Arabidopsis
det3 mutant, Science 289 (2000) 2338–2342.

[2] H.S. Ma, D. Liang, P. Shuai, X.L. Xia, W.L. Yin, The salt-and drought-inducible
poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis
thaliana, J. Exp. Bot. 61 (2010) 4011–4019.
[3] N.V. Fedoroff, Systems biology of abiotic stress: the elephant and the blind
men, Abiotic Stress Adaptation Plants (2010) 485–502.

[4] N.S. Maan, S. Maan, K. Nomikou, D.J. Johnson, M. El Harrak, H. Madani,
H. Yadin, S. Incoglu, K. Yesilbag, A.B. Allison, RT-PCR assays for seven
serotypes of epizootic haemorrhagic disease virus and their use to type
strains from the Mediterranean Region and North America, Plos. One 5
(2010) e12782.

[5] J. Kilian, D. Whitehead, J. Horak, D. Wanke, S. Weinl, O. Batistic, C. D’Angelo,
E. Bornberg-Bauer, J. Kudla, K. Harter, The AtGenExpress global stress
expression data set: protocols, evaluation and model data analysis of
UV-B light, drought and cold stress responses, Plant J. 50 (2007) 347–363.

[6] C.K. Sarmah, S. Samarasinghe, Microarray gene expression: a study of
between-platform association of Affymetrix and cDNA arrays, Comput. Biol.
Med. 41 (2011) 980–986.

[7] V.N.M. Aradhya, F. Masulli, S. Rovetta, A. Novel, Approach for biclustering
gene expression data using modular singular value decomposition, Lect.
Notes Bioinformatics 6160 (2010) 254–265.

[8] C.A. Kumar, S. Srinivas, Mining associations in health care data using formal
concept analysis and singular value decomposition, J. Biol. Syst. 18 (2010)
787–807.

[9] A.T. Wang, E.A. Gehan, Gene selection for microarray data analysis using
principal component analysis, Stat. Med. 24 (2005) 2069–2087.

[10] S. Ma, M.R. Kosorok, Identification of differential gene pathways with
principal component analysis, Bioinformatics 25 (2009) 882–889.

[11] N.R. Mustafa, H.K. Kim, Y.H. Choi, R. Verpoorte, Metabolic changes of
salicylic acid-elicited Catharanthus roseus cell suspension cultures moni-
tored by NMR-based metabolomics, Biotechnol. Lett. 31 (2009) 1967–1974.

[12] D.S. Huang, C.H. Zheng, Independent component analysis-based penalized
discriminant method for tumor classification using gene expression data,
Bioinformatics 22 (2006) 1855–1862.

[13] B. Li, C.H. Zheng, D.S. Huang, L. Zhang, K. Han, Gene expression data
classification using locally linear discriminant embedding, Comput. Biol.
Med. 40 (2010) 802–810.

[14] H. Zou, T. Hastie, R. Tibshirani, Sparse principal component analysis,
J. Comput. Graphical Stat. 15 (2006) 265–286.

[15] Y. Zhang, A. d’Aspremont, L.E. Ghaoui, Sparse P.C.A.: Convex relaxations,
algorithms and applications, Optim. Control (math.OC), (2010).

[16] D.M. Witten, R. Tibshirani, T. Hastie, A penalized matrix decomposition,
with applications to sparse principal components and canonical correlation
analysis, Biostatistics 10 (2009) 515–534.

[17] M.C. Wu, L.S. Zhang, Z.X. Wang, D.C. Christiani, X.H. Lin, Sparse linear
discriminant analysis for simultaneous testing for the significance of a gene
set/pathway and gene selection, Bioinformatics 25 (2009) 1145–1151.

[18] R. Luss, A. d’Aspremont, Clustering and feature selection using sparse
principal component analysis, Optim. Eng. 11 (2010) 145–157.

[19] C.H. Zheng, V. To-Yee Ng, L. Zhang, C.K. Shiu, H.Q. Wang, Tumor classifica-
tion based on non-negative matrix factorization using gene expression data,
NanoBiosci. IEEE Trans. (2011) 86–93.

[20] C.H. Zheng, L. Zhang, T.Y. Ng, C.K. Shiu, S.L. Wang, Inferring the transcrip-
tional modules using penalized matrix decomposition, Advanced Intelligent
Computing Theories and Applications: With Aspects of Artificial Intelli-
gence, vol. 6216, (2010), pp. 35–41.

[21] J. Zhang, C.H. Zheng, J.X. Liu, H.Q. Wang, Discovering the transcriptional
modules using microarray data by penalized matrix decomposition,
Comput. Biol. Med. 41 (2011) 1041–1050.

[22] F. Liang, Use of SVD-based probit transformation in clustering gene
expression profiles, Comput. Stat. Data Anal. 51 (2007) 6355–6366.

[23] D.J. Craigon, N. James, J. Okyere, J. Higgins, J. Jotham, S. May, NASCArrays: a
repository for microarray data generated by NASC’s transcriptomics service,
Nucleic Acids Res. 32 (2004) D575–D577.

[24] Z.J. Wu, R.A. Irizarry, R. Gentleman, F. Martinez-Murillo, F. Spencer, A
model-based background adjustment for oligonucleotide expression arrays,
J. Am. Stat. Assoc. 99 (2004) 909–917.

[25] M. Journée, Y. Nesterov, P. Richtarik, R. Sepulchre, Generalized power
method for sparse principal component analysis, J. Mach. Learn. Res. 11
(2010) 517–553.

[26] T.Z. Berardini, V.K. Khodiyar, R.C. Lovering, P. Talmud, The Gene Ontology in
2010: extensions and refinements, Nucleic Acids Res. 38 (2010) D331–D335.

[27] E.I. Boyle, S.A. Weng, J. Gollub, H. Jin, D. Botstein, J.M. Cherry, G. Sherlock,
GO:TermFinder—open source software for accessing Gene Ontology infor-
mation and finding significantly enriched Gene Ontology terms associated
with a list of genes, Bioinformatics 20 (2004) 3710–3715.

[28] J.J. Benschop, S. Mohammed, M. O’Flaherty, A.J.R. Heck, M. Slijper, F.L.H. Menke,
Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis, Mol.
Cell. Proteomics 6 (2007) 1198–1214.

[29] A. Abdeen, J. Schnell, B. Miki, Transcriptome analysis reveals absence of
unintended effects in drought-tolerant transgenic plants overexpressing the
transcription factor ABF3, BMC Genomics 11 (2010).

[30] P.J. Simpson, C. Tantitadapitak, A.M. Reed, O.C. Mather, C.M. Bunce,
S.A. White, J.P. Ride, characterization of two novel aldo–keto reductases
from Arabidopsis: expression patterns, broad substrate specificity, and an
open active-site structure suggest a role in toxicant metabolism following
stress, J. Mol. Biol. 392 (2009) 465–480.

[31] A. Cantero, S. Barthakur, T.J. Bushart, S. Chou, R.O. Morgan, M.P. Fernandez,
G.B. Clark, S.J. Roux, Expression profiling of the Arabidopsis annexin gene

doi:10.1016/j.compbiomed.2012.02.002


J.-X. Liu et al. / Computers in Biology and Medicine 42 (2012) 582–589588
family during germination, de-etiolation and abiotic stress, Plant Physiol.
Biochem. 44 (2006) 13–24.

[32] S.M. Huh, E.K. Noh, H.G. Kim, B.W. Jeon, K. Bae, H.C. Hu, J.M. Kwak, O.K. Park,
Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and
regulate drought and salt stress responses, Plant Cell Physiol. 51 (2010)
1499–1514.

[33] J. Peltier, A. Ytterberg, Q. Sun, New functions of the thylakoid membrane
proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile
fractionation strategy, J. Biol. Chem. 279 (2004) 49367–49383.

[34] D.Q. Huang, W.R. Wu, S.R. Abrams, A.J. Cutler, The relationship of drought-
related gene expression in Arabidopsis thaliana to hormonal and environmental
factors, J. Exp. Bot. 59 (2008) 2991–3007.

[35] D. Funck, S. Eckard, G. Muller, Non-redundant functions of two proline
dehydrogenase isoforms in Arabidopsis, BMC Plant Biol. 10 (2010).

[36] R.P. Huibers, M. de Jong, R.W. Dekter, G. Van den Ackerveken, Disease-
specific expression of host genes during downy mildew infection of
Arabidopsis, Mol. Plant–Microbe Interact. 22 (2009) 1104–1115.

[37] K. Okawa, K. Nakayama, T. Kakizaki, T. Yamashita, T. Inaba, Identification
and characterization of Cor413im proteins as novel components of the
chloroplast inner envelope, Plant Cell Environ. 31 (2008) 1470–1483.

[38] F. Gosti, N. Bertauche, N. Vartanian, J. Giraudat, Abscisic acid-dependent
and -independent regulation of gene-expression by progressive drought in
Arabidopsis thaliana, Mol. Genet. 246 (1995) 10–18.

[39] E. Seo, H. Lee, J. Jeon, H. Park, J. Kim, Y.S. Noh, I. Lee, Crosstalk between cold
response and flowering in Arabidopsis is mediated through the flowering-
time gene SOC1 and its upstream negative regulator FLC, Plant Cell 21
(2009) 3185–3197.

[40] P. Koops, S. Pelser, M. Ignatz, C. Klose, K. Marrocco-Selden, T. Kretsch, EDL3
is an F-box protein involved in the regulation of abscisic acid signalling in
Arabidopsis thaliana, J. Exp. Bot. (2011).

[41] S.Y. Kim, K.H. Nam, Physiological roles of ERD10 in abiotic stresses and seed
germination of Arabidopsis, Plant Cell Rep. 29 (2010) 203–209.

[42] K. Yamada, Y. Osakabe, J. Mizoi, K. Nakashima, Y. Fujita, K. Shinozaki,
K. Yamaguchi-Shinozaki, Functional analysis of an Arabidopsis thaliana
abiotic stress-inducible facilitated diffusion transporter for monosacchar-
ides, J. Biol. Chem. 285 (2010) 1138–1146.

[43] K. Maruyama, M. Takeda, S. Kidokoro, K. Yamada, Y. Sakuma, K. Urano,
M. Fujita, K. Yoshiwara, S. Matsukura, Y. Morishita, R. Sasaki, H. Suzuki,
K. Saito, D. Shibata, K. Shinozaki, K. Yamaguchi-Shinozaki, Metabolic path-
ways involved in cold acclimation identified by integrated analysis of
metabolites and transcripts regulated by DREB1A and DREB2A, Plant
Physiol. 150 (2009) 1972–1980.

[44] Y. Jiang, B. Yang, N.S. Harris, M.K. Deyholos, Comparative proteomic analysis
of NaCl stress-responsive proteins in Arabidopsis roots, J. Exp. Bot. 58 (2007)
3591–3607.

[45] G. Bannenberg, M. Martı́nez, M. Hamberg, C. Castresana, Diversity of the
enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana,
Lipids 44 (2009) 85–95.

[46] S. Chung, R.W. Parish, Combinatorial interactions of multiple cis-elements
regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic
acid and cold, Plant J. 54 (2008) 15–29.

[47] C. Vergnolle, M.N. Vaultier, L. Taconnat, J.P. Renou, J.C. Kader, A. Zachowski,
E. Ruelland, The cold-induced early activation of phospholipase C and D
pathways determines the response of two distinct clusters of genes in
Arabidopsis cell suspensions, Plant Physiol. 139 (2005) 1217–1233.

[48] J.E. Oh, Y. Kwon, J.H. Kim, H. Noh, S.W. Hong, H. Lee, A dual role for MYB60
in stomatal regulation and root growth of Arabidopsis thaliana under
drought stress, Plant Mol. Biol. 77 (2011) 91–103.

[49] H. Abe, T. Urao, T. Ito, M. Seki, K. Shinozaki, K. Yamaguchi-Shinozaki,
Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional
activators in abscisic acid signaling, Plant Cell 15 (2003) 63–78.

[50] L.S.P. Tran, K. Nakashima, Y. Sakuma, S.D. Simpson, Y. Fujita, K. Maruyama,
M. Fujita, M. Seki, K. Shinozaki, K. Yamaguchi-Shinozaki, Isolation and
functional analysis of Arabidopsis stress-inducible NAC transcription factors
that bind to a drought-responsive cis-element in the early responsive to
dehydration stress 1 promoter, Plant Cell 16 (2004) 2481–2498.

[51] S. Iuchi, Regulation of drought tolerance by gene manipulation of 9-cis-
epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in
Arabidopsis, Plant J 30 (2002). 611–611 (vol 27, pg 325, 2001).

[52] W.Z. Lan, S.C. Lee, Y.F. Che, Y.Q. Jiang, S. Luan, Mechanistic analysis of AKT1
regulation by the CBL–CIPK–PP2CA interactions, Mol. Plant 4 (2011)
527–536.

[53] Y. Tanaka, T. Sano, M. Tamaoki, N. Nakajima, N. Kondo, S. Hasezawa,
Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis,
Plant Physiol. 138 (2005) 2337–2343.

[54] S. Krishnaswamy, S. Verma, M.H. Rahman, N.N.V. Kav, Functional charac-
terization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and
DREB26) in Arabidopsis, Plant Mol. Biol. 75 (2011) 107–127.

[55] Y. Osakabe, S. Mizuno, H. Tanaka, K. Maruyama, K. Osakabe, D. Todaka,
Y. Fujita, M. Kobayashi, K. Shinozaki, K. Yamaguchi-Shinozaki, Overproduc-
tion of the membrane-bound receptor-like protein kinase 1, RPK1, enhances
abiotic stress tolerance in Arabidopsis, J. Biol. Chem. 285 (2010) 9190–9201.

[56] Y. Aubert, D. Vile, M. Pervent, D. Aldon, B. Ranty, T. Simonneau,
A. Vavasseur, J.P. Galaud, RD20, a stress-inducible caleosin, participates in
stomatal control, transpiration and drought tolerance in Arabidopsis thali-
ana, Plant Cell Physiol. 51 (2010) 1975–1987.
[57] T. Kunieda, N. Mitsuda, M. Ohme-Takagi, S. Takeda, M. Aida, M. Tasaka,
M. Kondo, M. Nishimura, I. Hara-Nishimura, NAC family proteins NARS1/
NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in
Arabidopsis, Plant Cell 20 (2008) 2631–2642.

[58] E. Alexandersson, L. Fraysse, S. Sjovall-Larsen, S. Gustavsson, M. Fellert,
M. Karlsson, U. Johanson, P. Kjellbom, Whole gene family expression and
drought stress regulation of aquaporins, Plant Mol. Biol. 59 (2005) 469–484.

[59] S. Fowler, M.F. Thomashow, Arabidopsis transcriptome profiling indicates
that multiple regulatory pathways are activated during cold acclimation
in addition to the CBF cold response pathway, Plant Cell 14 (2002)
1675–1690.

[60] J.B. Rossel, P.B. Wilson, D. Hussain, N.S. Woo, M.J. Gordon, O.P. Mewett,
K.A. Howell, J. Whelan, K. Kazan, B.J. Pogson, Systemic and intracellular
responses to photooxidative stress in Arabidopsis, Plant Cell 19 (2007)
4091–4110.

[61] Y.Q. Jiang, M.K. Deyholos, Functional characterization of Arabidopsis NaCl-
inducible WRKY25 and WRKY33 transcription factors in abiotic stresses,
Plant Mol. Biol. 69 (2009) 91–105.

[62] G. Drechsel, S. Raab, S. Hoth, Arabidopsis zinc-finger protein 2 is a negative
regulator of ABA signaling during seed germination, J. Plant Physiol. 167
(2010) 1418–1421.

[63] K. Dietrich, F. Weltmeier, A. Ehlert, C. Weiste, M. Stahl, K. Harter, W. Droge-
Laser, Heterodimers of the Arabidopsis transcription factors bZIP1 and
bZIP53 reprogram amino acid metabolism during low energy stress, Plant
Cell 23 (2011) 381–395.

[64] E. Perruc, M. Charpenteau, B.C. Ramirez, A. Jauneau, J.P. Galaud, R. Ranjeva,
B. Ranty, A novel calmodulin-binding protein functions as a negative
regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings, Plant
J. 38 (2004) 410–420.

[65] H.G. Kang, J. Kim, B. Kim, H. Jeong, S.H. Choi, E.K. Kim, H.Y. Lee, P.O. Lim,
Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances toler-
ance to cold, drought, and heat stresses in Arabidopsis thaliana, Plant Sci.
180 (2011) 634–641.

[66] C.N. Chen, C.C. Chu, R. Zentella, S.M. Pan, T.H.D. Ho, AtHVA22 gene family in
Arabidopsis: phylogenetic relationship, ABA and stress regulation, and
tissue-specific expression, Plant Mol. Biol. 49 (2002) 633–644.

[67] C.J. Zhou, Z.H. Cai, Y.F. Guo, S.S. Gan, An Arabidopsis mitogen-activated
protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence, Plant
Physiol. 150 (2009) 167–177.

[68] Y. Kraepiel, J. Pedron, O. Patrit, E. Simond-Cote, V. Hermand, F. Van
Gijsegem, Analysis of the plant bos1 mutant highlights necrosis as an
efficient defence mechanism during D. dadantii/Arabidospis thaliana inter-
action, Plos One 6 (2011).

[69] Y.H. Chen, X.Y. Yang, K. He, M.H. Liu, J.G. Li, Z.F. Gao, Z.Q. Lin, Y.F. Zhang,
X.X. Wang, X.M. Qiu, Y.P. Shen, L. Zhang, X.H. Deng, J.C. Luo, X.W. Deng,
Z.L. Chen, H.Y. Gu, L.J. Qu, The MYB transcription factor superfamily of
Arabidopsis: expression analysis and phylogenetic comparison with the rice
MYB family, Plant Mol. Biol. 60 (2006) 107–124.

[70] Y.F. Guo, S.S. Gan, AtMYB2 regulates whole plant senescence by inhibiting
cytokinin-mediated branching at late stages of development in Arabidopsis,
Plant Physiol. 156 (2011) 1612–1619.

[71] Y. Noutoshi, T. Kuromori, T. Wada, T. Hirayama, A. Kamiya, Y. Imura,
M. Yasuda, H. Nakashita, K. Shirasu, K. Shinozaki, Loss of necrotic spotted
lesions 1 associates with cell death and defense responses in Arabidopsis
thaliana, Plant Mol. Biol. 62 (2006) 29–42.

[72] N. Jambunathan, A. Penaganti, Y.H. Tang, R. Mahalingam, Modulation of
redox homeostasis under suboptimal conditions by Arabidopsis nudix
hydrolase 7, BMC Plant Biol. 10 (2010).

[73] J.T. Vogel, D.G. Zarka, H.A. Van Buskirk, S.G. Fowler, M.F. Thomashow, Roles
of the CBF2 and ZAT12 transcription factors in configuring the low
temperature transcriptome of Arabidopsis, Plant J. 41 (2005) 195–211.

[74] C.I. Pislariu, R. Dickstein, An IRE-like A.G.C. kinase gene, MtIRE, has unique
expression in the invasion zone of developing root nodules in Medicago
truncatula, Plant Physiol. 144 (2007) 682–694.

[75] D. Baek, P. Pathange, J.S. Chung, J.F. Jiang, L.Q. Gao, A. Oikawa, M.Y. Hirai,
K. Saito, P.W. Pare, H.Z. Shi, A stress-inducible sulphotransferase sulpho-
nates salicylic acid and confers pathogen resistance in Arabidopsis, Plant Cell
Environ. 33 (2010) 1383–1392.

[76] E. Balsemao-Pires, Y. Jaillais, B.J.S.C. Olson, L.R. Andrade, J.G. Umen, J. Chory,
G. Sachetto-Martins, The Arabidopsis translocator protein (AtTSPO) is
regulated at multiple levels in response to salt stress and perturbations in
tetrapyrrole metabolism, BMC Plant Biol. 11 (2011).

[77] V.B. Tognetti, O. Van Aken, K. Morreel, K. Vandenbroucke, B.V. de Cotte, I. De
Clercq, S. Chiwocha, R. Fenske, E. Prinsen, W. Boerjan, B. Genty, K.A. Stubbs,
D. Inze, F. Van Breusegem, Perturbation of indole-3-butyric acid home-
ostasis by the UDP-glucosyltransferase UGT74e2 modulates Arabidopsis
architecture and water stress tolerance, Plant Cell 22 (2010) 2660–2679.

[78] G. Fabro, J.A. Di Rienzo, C.A. Voigt, T. Savchenko, K. Dehesh, S. Somerville,
M.E. Alvarez, Genome-wide expression profiling Arabidopsis at the stage of
Golovinomyces cichoracearum haustorium formation, Plant Physiol. 146 (2008)
1421–1439.

[79] J. Van Leene, J. Hollunder, D. Eeckhout, G. Persiau, E. Van de Slijke, H. Stals,
G. Van Isterdael, A. Verkest, S. Neirynck, Y. Buffel, S. De Bodt, S. Maere,
K. Laukens, A. Pharazyn, P.C.G. Ferreira, N. Eloy, C. Renne, C. Meyer,
J.D. Faure, J. Steinbrenner, J. Beynon, J.C. Larkin, Y. Van de Peer, P. Hilson,
M. Kuiper, L. De Veylder, H. Van Onckelen, D. Inze, E. Witters, G. De Jaeger,



J.-X. Liu et al. / Computers in Biology and Medicine 42 (2012) 582–589 589
Targeted interactomics reveals a complex core cell cycle machinery in
Arabidopsis thaliana, Mol. Syst. Biol. 6 (2010).

[80] B.H. Lee, D.A. Henderson, J.K. Zhu, The Arabidopsis cold-responsive transcriptome
and its regulation by ICE1, Plant Cell 17 (2005) 3155–3175.

[81] M.D. Mikkelsen, M.F. Thomashow, A role for circadian evening elements in
cold-regulated gene expression in Arabidopsis, Plant J. 60 (2009) 328–339.

[82] F. Micheli, C. Holliger, R. Goldberg, L. Richard, Characterization of the pectin
methylesterase-like gene AtPME3: a new member of a gene family
comprising at least 12 genes in Arabidopsis thaliana, Gene 220 (1998)
13–20.

[83] H.J. Yang, Y.Q. Li, J. Hua, The C2 domain protein BAP1 negatively regulates
defense responses in Arabidopsis, Plant J. 48 (2006) 238–248.

[84] Z.K. Shinwari, K. Nakashima, S. Miura, M. Kasuga, M. Seki, K. Yamaguchi-
Shinozaki, K. Shinozaki, An Arabidopsis gene family encoding DRE/CRT
binding proteins involved in low-temperature-responsive gene expression,
Biochem. Biophys. Res. Commun. 250 (1998) 161–170.

[85] Y.H. Cheong, K.N. Kim, G.K. Pandey, R. Gupta, J.J. Grant, S. Luan, CBL1, a
calcium sensor that differentially regulates salt, drought, and cold responses
in Arabidopsis, Plant Cell 15 (2003) 1833–1845.

[86] O.S. Lau, X. Huang, J.B. Charron, J.H. Lee, G. Li, X.W. Deng, Interaction of
Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repres-
sion in the plant circadian clock, Mol. Cell 43 (2011) 703–712.

[87] T. Tsutsui, W. Kato, Y. Asada, K. Sako, T. Sato, Y. Sonoda, S. Kidokoro,
K. Yamaguchi-Shinozaki, M. Tamaoki, K. Arakawa, T. Ichikawa, M. Nakazawa,
M. Seki, K. Shinozaki, M. Matsui, A. Ikeda, J. Yamaguchi, DEAR1, a transcriptional
repressor of DREB protein that mediates plant defense and freezing stress
responses in Arabidopsis, J. Plant Res. 122 (2009) 633–643.

[88] C.L. Huang, S. Ding, H. Zhang, H. Du, L.Z. An, CIPK7 is involved in cold
response by interacting with CBL1 in Arabidopsis thaliana, Plant Sci. 181
(2011) 57–64.

[89] G.K. Pandey, Y.H. Cheong, B.G. Kim, J.J. Grant, L.G. Li, S. Luan, CIPK9: a
calcium sensor-interacting protein kinase required for low-potassium
tolerance in Arabidopsis, Cell Res. 17 (2007) 411–421.

[90] A. Thalhammer, M. Hundertmark, A.V. Popova, R. Seckler, D.K. Hincha,
Interaction of two intrinsically disordered plant stress proteins (COR15A
and COR15B) with lipid membranes in the dry state, BBA-Biomembr. 1798
(2010) 1812–1820.

[91] M. Seki, M. Narusaka, H. Abe, M. Kasuga, K. Yamaguchi-Shinozaki, P. Carninci,
Y. Hayashizaki, K. Shinozaki, Monitoring the expression pattern of 1300
Arabidopsis genes under drought and cold stresses using a full-length cDNA
microarray, Plant Cell 13 (2001) 61–72.

[92] J.L. Reyes, F. Campos, H. Wei, R. Arora, Y.I. Yang, D.T. Karlson, A.A. Covarrubias,
Functional dissection of hydrophilins during in vitro freeze protection, Plant
Cell Environ. 31 (2008) 1781–1790.

[93] M. Kimura, Y. Yamamoto, M. Seki, T. Sakurai, M. Sato, K. Shinozaki, K. Manabe,
M. Matsui, Identification of Arabidopsis genes regulated by high light stress using
cDNA microarray, Plant Cell Physiol. 43 (2002) S159-S159.
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